
BPD-INT001B Message-Oriented Middleware Integration Best Practice Guidelines – Page 1 of 8 
 

 Predefined supplemental document type codes are listed below: 
APP = Appendix BPD = Best Practice Document GEN = General Information Document     

OPD = Operations Document RFD = Existing Supporting Document Referenced by this ITP                                 WHP = White 
Paper  

 

Information Technology Supporting Documentation 
Commonwealth of Pennsylvania 
Governor's Office of Administration/Office for Information Technology 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introduction/Executive  
 
Summary: 
Integration is typically required when one application needs to access something contained in another 
application.  The access can be broken into two broad categories: data and business logic. 
 
Ideally, existing data and/or business logic is to be reused when possible. There are multiple approaches 
when reusing existing data and business logic to integrate applications. This document presents those 
approaches with architectural patterns and solutions for application integration, and it provides operational 
best practices for integration solutions. 
 
Main Document Content: 
Application Integration Approaches 
No single approach is used to integrate applications.  There are a number of approaches used to share 
data and business logic. These methods include: 
 

1. File Transfer 
2. Shared Databases 
3. Remote Procedure Calls 
4. Web Services 
5. Messaging 

 
No one approach is best for all integration options. Many factors go into choosing an integration approach.  
Those factors are addressed in the section, Choosing an Integration Approach. This section identifies 
the approaches.  
 
1. File Transfer – A file transfer occurs when one application produces a file and that file is then sent to 

a consuming application. In this instance, the producing application has data that another application 
requires. From a broader perspective, if the two applications are viewed as part of a larger system, the 
consuming application executes business logic as part of the larger system and the data it requires for 
the execution of the business logic comes from the producing application. The data in the transferred 
file serves to decouple the business logic of the applications. 

 
The primary issues surrounding the use of file transfers are timeliness of the file transfer, security of 
the data, format of the data in the file, and validity of the data. File transfers, in their simplest form, 

STD Number: BPD-INT001B 
STD Title: Message-Oriented Middleware Integration Best Practice 

Guidelines 
Issued by: Deputy Secretary for Information Technology 
Date Issued:  September 7, 2006 Date Revised:  October 25, 2010 
 
Domain: Integration 
Discipline: Messaging 
Technology Area: Message-Oriented Middleware 
Referenced by: ITP-INT001 
 
Revision 
History  
Date:    

Description:   

10/25/2010 ITP Refresh 



BPD-INT001B Middleware: Product Standards– Page 2 of 8 
 
 

utilize few system resources to manage the transfer but often require human intervention. Human 
intervention can make file transfer time a consuming, error-prone, and costly integration solution. 

 
2. Shared Database – A database shared between two or more applications abstracts data into a form 

that is useful as input into business logic in multiple applications. The quality of the data determines 
the utility of the data. Data quality is determined by the authority of the data source, its validity, 
correctness, timeliness and completeness of the data.  

 
Many applications can be integrated using a shared database if the quality of data permits. Shared 
databases decouple data from business logic, which provides the basis for widespread application 
integration. The decoupling from business logic and abstraction of data often leads to long-term 
limitations in application integration. It is not possible to design shared databases that are ideal for 
unknown (future) applications at the time of the design. This can lead to the expense associated with 
database redesign. Other issues with shared databases involve ownership of the data and distribution 
of the data.  

 
3. Remote Procedure Calls (RPC) – Remote procedure calls are another form of integrating two or 

more distributed applications. Whereas a share database is a data-centric approach to combining data 
and business logic, remote procedure calls are a functional approach. When remote procedure calls are 
utilized, one application invokes business logic in another application while passing enough information 
to direct the execution of the business logic. This execution of business logic may in turn update data 
for the application implementing the remote procedure call. 

 
Many technologies support RPC, including COM, CORBA, and Java RMI. RPCs are an effective method 
of business logic reuse. However, the use of remote procedure calls often leads to the tight coupling of 
application logic, which produces brittle application architectures that are difficult to maintain and 
extend over the life of applications. 

 
4. Web Services – Web Services is a more recent technology that has evolved from remote procedure 

call mechanisms. Web Services is similar to remote procedure calls because it provides a method for 
one application to invoke business logic in another application. Web Services is different from 
traditional remote procedure calls in that Web Services is viewed as the building block of a Service 
Oriented Architecture (SOA). In an SOA, Web Services has a coarse granularity and often the 
granularity aligns to business processes. The coarse granularity and loose coupling of Web Services 
provides a means of quick adaptation in the business environment. 

 
5. Messaging – Common messaging systems integrate messaging applications and change data back to 

invoke business logic. Message-oriented Middleware (MOM) differs from a file transfer because file 
transfer data is often batched. Messages in MOM are generally sent as the data becomes available to 
generate the message. MOM differs from remote procedure calls since the messages in a MOM solution 
are decoupled from specific application logic, whereas a remote procedure call invokes specific 
application logic, which closely ties two applications together.   

 
Integration Patterns 
Patterns are proven solutions to recurring problems. By recognizing a pattern in a problem, it is possible 
to identify a solution to an application integration problem. The following patterns are commonly found in 
application integration. 
 
File Transfer Pattern 
Problem:  There are multiple applications built independently with different programming languages, 
running on different hardware and operating system platforms. The applications have a requirement for 
data that can be produced by one or more applications. The data is not needed in real-time and the data 
can be processed on a schedule.   

Application 1 Application 2
File

 



BPD-INT001B Middleware: Product Standards– Page 3 of 8 
 
 

 
Solution:  Applications can produce files and the files can be transferred on a regular schedule to other 
applications to consume the information in the files. 
 
Consequences:  An application rarely contains data in a format that is understandable by another 
application. Developers are to write transformation logic to create files that have the required data and 
are in a format to be understood by another application. 
 
Best Practice:  Applications are to be written to produce and consume XML files. XML files contain self-
describing data and can be transformed into other formats through commonly available utilities and APIs. 
 
Shared Database Pattern 
Problem:  There are multiple applications built independently with different programming languages that 
run on different hardware and operating system platforms. The applications have a requirement to rapidly 
share information in a consistent format. The data often has complex relationships and is continuously 
validated and enforced. 

Application 1 Application 2 Application 3

Sh
ar

ed
Da

ta
ba

se

 

Solution:  Use a shared database to integrate the applications. 
 
Consequences:  Existing applications may need to be re-factored to use the shared database if they were 
not already using a database. Additionally, the database design and security may need to be altered to 
support all applications. Simultaneous updates of the same data can be handled by transaction 
management tools of the database system.   
 
Remote Procedure Call Pattern 
Problem: There are multiple applications built independently with different programming languages that 
run on different hardware and operating system platforms. The applications have a requirement to share 
business logic in a responsive manner. 

Application 1 Application 2

Function

Result

Pr
ox

y

St
ub

 

Solution:  Applications can use remote procedure calls that provide an interface to allow other 
applications to execute the procedure call. Web Services is the modern remote procedure call mechanism 
that allows applications of different programming languages and execution platforms to communicate. 
 
Consequences:  Applications need to be designed to provide an appropriate remote procedure call 
interface. Designing the interface requires skill and knowledge. Many distributed applications performing 
remote procedure calls create architectural complexity and require re-factoring over time to manage the 
architectural complexity. Applications become encapsulating units of their data and are responsible for the 
integrity of their data. Complex logic may be required to maintain the integrity of data if an RDMS is not 



BPD-INT001B Middleware: Product Standards– Page 4 of 8 
 
 

used. If an RDMS is used, and the applications are primarily sharing data, a shared database may be a 
better approach.   
 
Best Practice:  Applications using the remote procedure call pattern are to implement Web Services. 
Request-Reply Pattern 
Problem:  Two applications communicate data via messaging and require a bi-directional conversation. 

Application 1 Application 2

Reply Channel

Request Channel

 

Solution:  Use messaging to communicate between the two applications with one channel dedicated to 
the request and another channel dedicated to the reply.  
 
Consequences:  The Request-Reply pattern works with two applications.   
 
Best Practice: Dedicate message channels to messaging in one direction. 
 
Publish/Subscribe Pattern 
Problem: Multiple applications receive messages sent from a single application, triggered by an event. 
 

Subscriber

Subscriber

Subscriber

Publisher

 

Solution:  A publisher application sends the message on a publish-subscribe channel. The publish-
subscribe channel delivers a copy of the message to each subscriber. In this pattern there is one publish 
channel and multiple output channels; each output channel has exactly one subscriber. 
 
Consequences:  Subscribers consume a copy of the message from their own dedicated channel. For a 
message to disappear, all subscribers are to consume their copy of the message. Depending on the type 
of message being published, not all subscribers may be interested in every message. Subscribers are to 
use logic to consume messages and determine if it is a message that the subscriber desires. This scenario 
increases application overhead while delegating processing to distributed subscribers. 
 
Durable Subscriber Pattern 
Problem:  Multiple applications are interested in receiving messages from a single application when an 
event occurs. However, some or all of the applications may be disconnected when an event message is 
written and do not want to miss the message. 



BPD-INT001B Middleware: Product Standards– Page 5 of 8 
 
 

 

Solution:  The messaging system can use a durable subscriber to save messages during disconnection of 
the subscriber. 
 
Consequences: When a durable subscription is used, the message system saves the message for a 
disconnected subscriber. The subscriber will not loose any messages when in a disconnected state. When 
the subscriber is connected, the system behaves in the same manner as a normal publish-subscribe 
channel. The messaging system behaves differently only when a subscriber is disconnected.  Subscribers 
that remain disconnected for long periods or do not return, may require operator intervention. 
 
Guaranteed Delivery Pattern 
Problem:  A sender initiates a message to a receiver.  The message is to be delivered even if the 
messaging system fails. 
 

 

Solution: The Guaranteed Delivery pattern makes the message persistent. The messaging system uses a 
built-in data store to save the messages. If the messaging system fails and is later resurrected, then the 
messaging system checks the message store and completes the transaction.   
 
Consequences:  The guaranteed delivery pattern requires additional overhead of writing each message 
to a data store.  
 
Message Broker Pattern 
Problem:  Decoupling destination of a message from the sender and maintaining control over the flow of 
messages. 
 

 



BPD-INT001B Middleware: Product Standards– Page 6 of 8 
 
 

Solution: Use a central message broker that can receive messages from multiple destinations, determine 
the correct destination and route the message to the correct channel. The message broker pattern is also 
known as a hub-and-spoke architecture.  
 
Consequences:  The message broker pattern is a large-scale architectural pattern. Other patterns (e.g., 
publish-subscribe, request-reply) can be layered into the message broker pattern. The message broker 
pattern creates a central point of administration, which can be an advantage; however, there can be a 
great amount of architectural complexity as many applications are added to the message broker.   
 
Choosing an Integration Approach 
Various criteria need to be considered when deciding on the use of any type of technology. In addition, 
there are broad ranges of considerations beginning with the need for the application integration. Is an 
application integration solution truly required?  Developing a stand-alone application that does not require 
the services or interaction of other applications will avoid the need for application integration. Conversely, 
a solution that generates redundant data or business logic and creates an application silo that is 
disconnected from the enterprise may not be desired.     
 
The first step when choosing an application integration solution is determining whether the data or 
business logic exists in a usable form elsewhere. If data or business logic does exist, then what is the 
method to leverage the data or business logic in the new application? The following table summarizes 
characteristics of integration approaches followed with detailed descriptions of the characteristics. 
 

  
File 

Transfer 

 
Shared 

Database 

Remote 
Procedure 

Calls 

 
Web 

Services 

Message 
Oriented 

Middleware 
Cost Varies Varies Varies Varies Varies 
Simplicity Simple Varies Varies Varies Varies 
Coupling Loose Loose Tight Varies Varies 
Data Centric Yes Yes No Yes/No Yes 
Synchronicity Asynch N/A Asynch/Synch Asynch/Synch Asynch/Synch 
Data Latency  High Low Low Low Low 
 
1. Cost – Costs for integrating applications vary. For instance, two Java applications can integrate using 

RMI (a remote procedure call mechanism) without additional hardware or software costs. Managing the 
programmatic integration and maintaining the two applications over time may increase the total cost 
of integration. Other solutions that incorporate file transfer and shared databases may leverage 
existing resources without significant cost. In addition to providing a lower-cost solution than file 
transfer or a remote procedure call solution, message-oriented middleware may already exist in an 
organization, or could be purchased to manage messages between many applications.   

 
Any potential integration technology selection is to include a cost analysis of the various integration 
methods, including: development, hardware, software, administrative, operational, and long-term 
application maintenance and extension costs.  

 
2. Simplicity – Simplicity is a critical architectural construct from a design perspective as well as from an 

implementation and maintenance perspective. The selection of an application integration method 
affects the architecture of a system of applications because more than one application needs to be 
coupled in an application integration solution.  

 
An integration technology choice is to minimize the amount of program code required to implement 
the integration solution. Architectural simplicity is also important with respect to the long-term costs 
associated with maintaining and extending application in an integration solution. One-off solutions may 
seem architecturally simple; however, in the long term, when there are many one-off solutions, 
maintenance and operations cost may increase. For instance, a file transfer solution between two 
applications may seem like a very simple solution, but if the solution grows to tens or hundreds of files 
over time there is a high likelihood that the solution will become more expensive to manage and 
maintain than using another solution.  

 



BPD-INT001B Middleware: Product Standards– Page 7 of 8 
 
 

3. Coupling – Application coupling is the degree to which an application needs to know how another 
application works to make integration possible. Tightly coupled applications are difficult to maintain 
and extend in the long term. Integrated applications are to be loosely coupled when possible, allowing 
applications to share data and business logic while allowing applications to change over time. File 
sharing, shared databases, and messaging allow for loose coupling. Remote procedure call 
mechanisms and Web Services can provide for loose coupling with appropriate infrastructure and 
architectural designs.  

 
4. Data-Centric Logic – One aim of integration solutions is to achieve the reuse of data and/or business 

logic. It is possible to meet an application’s needs by providing data to an application so it can execute 
business logic, or by providing the business logic from a component, service or another application 
which uses the data of the application. In short, data and/or business logic creation costs money. If 
data and/or business logic already exists then a significant costs savings can occur by reusing the data 
and/or business logic.   

 
Data and business logic forms can determine the application integration solution. For instance, if data 
exists in a shared database the integration solution is to utilize the shared database. Likewise, a Web 
Service may exist to meet the business logic needs of an application. The availability of data or 
business logic will affect the selection of an integration solution. 

 
5. Synchronicity – Application requirements determine the synchronicity needs in an integration 

solution. File transfer and shared database solutions can be used when applications do not require 
acknowledgement of data receipt. Remote procedure calls and messaging integration solutions can be 
implemented in a synchronous or asynchronous manner. 

 
6. Data format, latency, and quality – When investigating the reuse of data in an integration solution 

the format of the data needs to be agreed-upon between applications for applications to integrate. XML 
is an ideal representation of data for application integration and the use of XML is highly encouraged in 
all integration solutions. However, even if data can be exchanged between applications the timeliness 
and quality of data may affect the integration solution. For instance, a file transfer may batch many 
transactions to be used between two applications, but if application requires real-time data, the file 
transfer integration solution may not be adequate.  

 
Operational Best Practices 
Operational best practices ensure the successful implementation of application integration projects. The 
best practices presented here take into account the total lifecycle of integration solutions.   
 
File Transfer 

1. Application integration solutions that utilize file transfers are to format the contents of files using 
XML.  

2. When secure file transfers are needed, the file transfer solution is to be evaluated for the inclusion 
of: 

a. Secure file transfer mechanism, e.g., authenticated FTP or the use of FTPS; and 
b. Encryption of file transfer payloads. 

3. File transfer solutions are to include an operation plan to monitor and administer file transfers. 
 
Shared Databases 
Refer to ITP-INF001, Database Management Systems for best practices in implementing database 
applications and integration solutions using shared databases. 
 
Remote Procedure Calls 
Web Services are to be utilized for remote procedure call integration solutions.  
 
Message-Oriented Middleware 

1. Develop a messaging architecture that aligns to application requirements prior to implementing a 
message-oriented middleware solution. The messaging architecture is to address the entire 
lifecycle of the solution, including additions of new and existing applications to the middleware 
solution, the distribution of messaging end points, and bridging multiple middleware products. 

2. Develop operational procedures for monitoring and administrating new messaging applications. 



BPD-INT001B Middleware: Product Standards– Page 8 of 8 
 
 

3. Use consistent naming conventions for channels and queues. 
4. Use XML for message payload. This is particularly important for the future extension, maintenance 

and integration of applications using transformation and orchestration tools. 
5. Ensure unidirectional message channels and queues. 
6. Design and configure channels and queues to align with non-functional requirements, including: 

a. Application Volume 
b. Queue Depth 
c. Security Policy 
d. Performance 
e. Expected Data Volumes (messages per second) 
f. Message Length  

7. Implement and maintain Dead Letter Queues for undeliverable messages. 


